Analyzing Cool Physics Videos

Andrew Moffat Physics, Math, Design Tech Teacher Bishop Strachan School, Toronto amoffat@bss.on.ca

Contact Info:

Andrew Moffat Physics, Math, Design Tech Teacher Bishop Strachan School, Toronto amoffat@bss.on.ca

Outline

- 1. Why is Video Analysis Awesome?
- 2. Why is Pivot Interactives Different?
- 3. How it Works & Example
 - a. SPH3U Keeping Time! Measuring the Speed of Sound
 - b. SPH4UI Rotational Collisions: Disk on Disk
- 4. Try it out 2 options:
 - a. SPH3U Force and Motion during a Hockey Slapshot
 - b. SPH4U Ballistics Simple Pendulum Challenge

Why is Video Analysis Awesome?

- 1. Allows students to look at real life situations not possible in the classroom
- 2. Requires students to "Think" to solve them:
 - a. Tools
 - b. Concepts
- 3. Time effective
- 4. Shouldn't replace labs/activities/demos in class

Why is Pivot Different?

- 1. Flexible, floating tools
- 2. Searchable videos
- 3. Easy to use timing features
- 4. Various frame rates
- 5. Over 200 High-quality videos (and more all the time)
- 6. BUT ... it costs money :-(

Free (older) Version: Direct Motion Video Library

https://serc.carleton.edu/dmvideos/videos.html

Or: Take your own and use video analysis software such as LoggerPro

How Pivot Works and Example

- 1. Browse the "Pivot Interactives Library"
- 2. "Add to My Library"
- 3. Modify as necessary, by adding/editing components:
- 4. Other options:
 - a. Make your own activity
 - b. Just use the videos
- 5. Manage/Assess Classes

Components

	Туре	✓ General Note	Ŷ	Add Component
>	Vide	General Instruction Data Table & Graph Data Table Select One Question		
>	Vide	Select Any Question Open Ended Question Video Instance Student Instance Upload Yes/No Question		

SPH3U Example: Keeping Time! Measuring the Speed of Sound

SPH3U - Keep in Time! Measuring the Speed of Sound

Students use observe the progression of sound waves, watching marching band musicians clapping to the sound of a metronome.

Solution: Keeping Time! Measuring the Speed of Sound

5		Distance	:	Time	:
		m		S	
	1	10		0.0333	
	2	20		0.0625	
	3	30		0.08333	
	4	40		0.1	
	5	50		0.1167	
	6	60		0.1708	
	7	70		0.225	
	8	80		0.2375	
	9	1			
				1	

Distance vs Time

Linear Regression

Distance = 320 · Time + 3.84

 $r_1 = 0.980$

Distance vs Time

Time (s)

Analysis in LoggerPro

Note on IFF & LOL Diagrams

IFF is diagram to show the transfer of momentum:

Note on IFF & LOL Diagrams

LOL is a diagram to show the conservation of energy:

SPH4UI Example: Rotational Collisions: Disk on Disk

SPH4UI - Rotational Collisions: Disk on Disk

A non-rotating disk is dropped onto a rotating one, resulting in a rotational collision.

Solution: Rotational Collisions: Disk on Disk

SPH4UI - Rotational Collisions: Disk on Disk

A non-rotating disk is dropped onto a rotating one, resulting in a rotational collision.

- 1. Disk mass: ~3.1 kg
- 2. % loss in angular momentum: \sim 5%
- 3. % loss of kinetic energy: ~57%

Consolvation of rolational momentum (using trial #1- slow motion)

$$L_i = L_s$$

 $I_{wo} = I_w$
 $I_{whally} = Trothions in 61 frames (0.254167s)$
 $R_L = 30 cm$
 $R_L = 3$

\$1

Li = Ly Ibuk= 1/MR2 Iiwi = Isws ZMR2. wi = (ZMR2+ZMsR3) cus 2.85kg · (0.3m) - 6.12 mod/s -288kg · (0.3m) 4.19 mod/s $M_{s} = \frac{M_{L}R^{2}\omega_{i}}{\omega_{s}} - M_{L}R^{2}$ (.18m)2 = 376 kg The mass of the small, is approximately 3.8 kg

SPH3U Example: Force and Motion During a Hockey Slapshot

SPH3U - Force and Motion During a Hockey Slapshot

Explore the force applied to a hockey puck during a slap shot.

Solution: Force and Motion During a Hockey Slapshot

1. Average Force ~ 135-140 N

$$\vec{F}_{a} = \vec{M}\vec{q} \Rightarrow \vec{q} = \frac{\Delta v}{\Delta t} = \frac{V_{Max} - D}{\Delta t}$$

$$V_{Max} = \frac{4d}{\delta t} = \frac{1.45 \text{ m}}{0.0458s} = 11 \text{ frames}$$

$$= 31.66 \text{ m/s}$$

$$T_{ine} \text{ of shot (Puck & shok in contact)} = 9 \text{ frames}$$

$$(0.0375s)$$

$$= 143.3 \text{ N} \text{ [f_{ab}]}$$

$$= 143.3 \text{ N} \text{ [f_{ab}]}$$

$$\therefore Average \text{ force of shot was ~140 N}$$

Analysis in LoggerPro

SPH4U Example: Ballistic Simple Pendulum Challenge

SPH4U - Ballistic Simple Pendulum Challenge

A challenging physics classic with an interesting real-world twist

Solution: Ballistic Simple Pendulum Challenge

SPH4U - Ballistic Simple Pendulum Challenge

A challenging physics classic with an interesting real-world twist

- 1. Speed of Pendulum: ~1.6 m/s
- 2. Speed of Marble: ~96 m/s

LOL Eug Egg Ethum 3 EK, Eg. Ethorn, Conservation of energy works well from tx -> Ey affredhison Emax Leight

1.
$$E_{K_2} = E_{3,3}$$

 $\frac{1}{2} m_{mp}^{\gamma} v_{mp}^{\gamma} = m_{p'p} g h$
 $v_{mp} = \sqrt{2gh}$
From video
 $e_{1}^{\gamma} \int \frac{1}{2} e_{max} height$
 $e_{1}^{\gamma} \int \frac{1}{2} e_{max} height$
 $= 76m - .76 \cos 35^{\circ}$
 $= 0.137 m$
 $v_{mp} = \sqrt{2.9.81 - \sqrt{s^2} + 0.157} m$
 $= 1.64m/s$
. The velocity of methle/pendolon
ofter collision was $\sim 1.64m/s$