Electromagnetism Review	Name		
Refer to the diagrams above to answer the following questions.			
 Which of the above could be gravitational field lin a) I, VII b) IV, VII 	nes? c) I, IV d) I, IV, VII		
2) Which type of field could be represented by the linea) electricb) magnetic	nes in I? c) gravitational d) all three		
3) Which could represent the field lines around a cura) II, IIIb) II, V	c) III, V d) all three		
4) Diagram III could represent the field lines fora) a magnetb) a solenoid	c) either a) or b) d) neither a) nor b)		
5) Diagram VII could represent the field linesa) between charged plates or inside a solenoidc) near the Earth or between charged plates	b) near the Earth or inside a solenoidd) any of the three possibilities		
6) Diagram VI could represent the field lines fora) an electric fieldc) an electric or a magnetic field	b) a magnetic fieldd) neither an electric nor a magnetic field		
7) Diagram I could represent the field lines fora) an electric field b) a gravitational field	c) neither field d) either field		
 8) A stronger electromagnet can be made with a) more turns and an iron core c) more turns and a copper core b) more turns per cm and an iron core d) more turns per cm and a copper core 			
 10) A magnetic field is different from both an electric and a gravitational field because it a) only acts on a few elements b) does not follow an inverse square law d) all of the above 			
 11) Magnetism is similar to electricity, but different from gravity, because magnetism and electricity a) depend on charge b) can attract and repel c) depend on mass d) all three 			
 12) What is true about the field lines of all electric, magnetic, and gravitational fields? They a) form loops b) radiate from charges or masses c) show the path that a particle will follow d) never cross 			
13) A charged particle travelling in a uniform field coa) gravitationalb) magnetic	uld have a circular trajectory if the field is c) electrical d) gravitational or electrical		

14) A magnetic field that is unifa) around a current carryingc) outside a current carrying	form can be found gwire g solenoid	b) around a current carry d) inside a current carry	ying loop ing solenoid	
 15) A uniform magnetic field w a) perpendicular to the field b) parallel to the field and t c) perpendicular to the field d) parallel to the field and t 	vill cause a charge to n lines and the field stru- the field is constant and the field is increas the field is increasing	nove in a circle if the charg e ngth is constant using	ge is moving	
16) An electron moving North ta) a force perpendicular to ic) a force oriented West	hrough a uniform mag ts velocity	netic field pointing South experiencesb) a force in the same direction as its velocityd) no force		
17) A current is flowing North ia) A force down	in a magnetic field that b) a force up	points West. It experience c) a force west	es d) no force	
 18) When a bar magnet is pushed N pole first into a solenoid, the needle of a galvanometer connected to the solenoid moves to the right. The needle will move to the left when the magnet is then a) pulled out the bottom b) pulled back out the top c) held stationary d) both answers a) and b) 				
 19) A magnet is dropped down a copper tube and it falls much slower than an otherwise identical but demagnetised magnet did. This is because the magnet a) is repelled by a permanent magnetic field b) is repelled by an induced magnetic field c) experiences more air resistance b) is repelled by an induced magnetic field d) both answers b) and c) 				
20) It is possible to shield mater a) magnetic and electric b)	rials from the following gravitational and elect	g fields: tric c) gravitational and n	nagnetic d) all three types	
21) A charged particle is placed released it will exhibit constant a) acceleration	l in a uniform magnetic tant b) velocity	c) speed d	itational field. When	
 22) Particles with the same charge and mass enter a uniform magnetic field at right angles. The radius of curvature is a) greater for the faster particles b) smaller for the faster particles c) the same for all the particles d) infinite, the paths are straight 				
23) Two parallel wires carryinga) be attracted to each otherc) not affect each other	opposite-direction cur	rents will b) repel each other d) attract, then repel eac	ch other	
24) The current flowing in your house is unlikely to affect a compass needle becausea) the wires are insulated with plastic and the wires are in different directionsb) the current is alternating and the current is not very greatc) the wires are insulated with plastic and the current is alternatingd) you need a magnetic field to affect a compass needle				

25) Two wires carry current as shown. One wire is slightly above the other. Which region has the strongest field pointing out of the page?

- 26) When a charged particle is fired into a uniform magnetic field at an angle of 90°, it moves along a a) circular path b) straight path c) parabolic path d) spiral path
- 27) Charged particles will go straight in a velocity selector when the following are equal in magnitude a) mass and charge b) electric force and magnetic force c) electric field and magnetic field
- d) both answers b) and c)
- 28) The magnetic field strength outside a solenoid varies
 - a) inversely to the distance from the central axis, r
 - b) inversely to r^2
 - c) directly to r
 - d) in a really complicated way
- 29) The magnetic field outside a co-axial cable is
 - a) inversely proportional to r
 - c) directly proportional to r

- b) inversely proportional to r^2
- d) zero