May 1, 2001 Time: 1.0 hour

The Ontario Association of Physics teachers is affiliated with The American Association of Physics Teachers

ACKNOWLEDGMENTS The assistance of the following in the preparation of this contest

is gratefully acknowledged.

Contest Committee: Terry Price (convenor), Rolly Meisel(author), Vida Ghaem-

Maghami(author), Douglas Abe (past author)

Contest Reviewers: John Breukelaar (Trent U.), Dr. John Pitre (U. of Toronto), Kevin

Soltes

Assistance: Dr. Ernie McFarland (U. of Guelph)

Submitted questions: Committee and John Beattie, John Colterman, Kris Barron,

Gabriela Smeianu, John Childs

Physics Departments at the following universities have shown interest in your physics education and have generously contributed funds for prizes given to the provincial winners:

McMaster University (Faculty of Engineering Fireball Show)

Queen¹s University (Department of Physics Stirling Hall)

Ryerson Polytechnic University (Department of Math/Physics/Computer Sc)

University of Toronto, Scarborough Campus (Division of Physical Sciences)

University of Toronto, St. George Campus (Department of Physics)

University of Toronto (Department of Physics)

University of Western Ontario (Department of Physics & Astronomy)

University of Windsor (Department of Physics) Wilfrid Laurier University (Department of Physics)

Laurentian University (Department of Physics) University of Waterloo (Department of Physics)

University of Guelph (Department of Physics) Trent University (Department of Physics)

The following companies have graciously contributed to the prize awards:

AECL CCS Educational Inc. Texas Instruments Paramount Canada¹s Wonderland Vernier Software

PRIZES The two students having the highest score in each school will be recognized by the OAPT with certificates. The top students in the province will receive a cash prize and/or a calculator with a special certificate from OAPT.

INSTRUCTIONS

- 1. For each question select the best answer from the choices offered.
- 2. When you have finished, carefully transfer your answers to the computer answer sheet as instructed by your teacher.
- 3. Solutions are not required.
- 4. Calculators may be used, but no other aids are allowed.

All questions are of equal value and there are no marks deducted for incorrect answers

DATA: Acceleration due to gravity = 9.80 m/s^2

1) While you are working or which is about 1.50 x 10 ⁸ km A) 29.9 km/s	n away. At appro					,
2) A pilot has an airplane that friend, and then return home package and turn the plane A) 1.6 h	e. There was a st to be negligible, t	teady wind blowin	g from the north a	t 50 km/h. Assum		the
3) If a dragster goes from rethe finish line, assuming con A) 2 km/h	nstant acceleratio		ne 2/10 of a kilome D) 120 km/h	eter away in 10 se E) 144 km/h	econds, what is its speed a	at
4) Anne Montminy, our doubleft the tower with a speed ohit the water?						
A) the acceleration due to gr C) slightly less than the acce E) cannot be determined unl	eleration due to g	ravity D) zero	nan the acceleration	on due to gravity		
5) A man was walking westw A) turned southwar		isle of a train mov d northwards	ring west at 120 kr C) slowed down	n/h when he felt "t D) sped up	thrown" to his left. The transfer E) accelerated eastward	
6) Patty was riding in her brodid not bother wearing a sea dashboard 0.75 m away. Che The ensuing collision brough average force would Patty no A) 70.0 N	atbelt. She figure huck's attention w ht his car to rest i eed to stop her 7	d that she could uvas diverted and he named in a negligible time	use her arms to ex ne didn't notice the e and distance. As	ert a stopping force large garbage trussuming a constar	ce before she hit the uck pull out in front of him	
7) While driving down an icy force of 200 N on the truck for A) 0 J B) 600	or two minutes, b	out failed to move	it. The work done	by the three friend		
8) Suppose you are pushing	on a loaded sho	pping cart. Which	n of the following is	s true?		
 A) If action force always equas you push forward on the B) You push the cart slightly C) You push before the cart D) You can push the cart for E) You are in contact with the cart moves. 	cart. y harder than the t has time to reac orward only if you	cart pushes you but, so the cart mov weigh more than	packward, so the cless forward.	cart moves forward	d	
9) Toyota and Honda have be powers the electric motor is A) A fuel cell E D) Energy transfer	obtained from: 3) Plugging the c	ar into an electric		ne of the energy fo	or the batteries which	
10) The purpose of a lightnin A) attract lightning to lightning strike D) provide	to itself B) repel	lightning from the			om a flow of electrons du	e
11) Annika painted three pin a charge of 12 microcouloml ball C and detached. The fir A) 4, 4, 4	bs on ball A. It son all charges on the	wung over, touche	ed ball B and then	detached. Ball B	swung over and touched	
12) The battery in Siddiq's continuous in the battery were used to li A) 12.0 cm	ift the car straight	0 volts and 60.0 at t up, approximatel C) 432 km	mpere-hours. The y how high would D) 440 m	e car has a mass o it go? E) 4320 m	of 6.00x10 ² kg. If the ene	rgy

13) Dan's family moved to that the local outlets carries such as a 10 Ω toaster an	ed a potential of 24	0 V, Dan figured t	here was no					
A) both appliances would C) the toaster would overl D) the iron would overhea E) the 15 A fuse protectin	heat and the iron wat and the toaster w	ould run colder th	an normal	ork at all				
14) A magnetic compass through the wire. The cor electron current in the wir. A) parallel, north B) para E) cannot be determined	mpass needle did r e was flowing llel, south C) perpe	not move, even when endicular, west		ghtly. The wire				
15) While vacationing in C hurtling down through the A) northwards				Earth's magne	tic field, it w			
16) Two coils marked A a magnet on wheels marked the left, then magnet C we	d C was placed nea	ar the end of coil E						
A) north, plunged into into D) south, pulled	B) north, pulled o out of E) either (A)	out of C) south or (D) would wor				N S	_	
17) An appliance in your home that would not be expected to contain an electromagnet is:								
A) a refrigerator	B) a television	C) a toa	ster D)	a washing mad	hine E)	a vacuum cle	eaner	
18) A lifeguard at P on the water at Q. Assuming the path will take the least time	at she can run faste				A B		Р	
A) P to A to Q B) P to D) P to C to Q E) All the				Q	С			
19) What must be the minimum length of a vertical plane mirror in order for you to see a full view of yourself?								
A) ¼ your height B) ½ your height C) ¾ your height D) your full height E) The answer depends on your distance from the mirror.								
20) Several lenses with the closest to the lens?	ne same diameter a	are shown below.	Which of the	se lenses would	d bring a bea	am of light to	a spot	
A) B)		C)	D)		E)			
						7		

21) Suppose that Albert Michelson set up his octogonal rotating mirror to measure the speed of light. Suppose further that he used a reflecting mirror 36.0 km away. What is the minimum number of revolutions per second required of the rotating mirror? A) 8330 B) 4168 C) 1040 D) 521 E) 260								
22) Which of the following phenomena is not considered as an interference effect?								
A) air column resonance B) the Doppler effect C) beats D) standing waves in a string E) all the above are interference effects								
23) Radio station CDB broadcasts at a frequency of 102.1 MHz and uses a quarter wave antenna. The height of antenna required is approximately:								
A) 75 cm B) 150 cm C) 300 cm D) 102.1 m E) 102.1 km 24) A large pendulum was constructed at the south pole, and set vibrating. Six hours later the plane of vibration will have rotated through an angle of: A) 0° B) 90° C) 180° D) 270° E) 360°								
25) A guitar string is stretched as shown from point A to G. Equal intervals are marked off by B, C, D, E and F. Paper folders are placed in locations D, E and F. The string is pinched at C and twanged at B. What happens?								
A) All of the riders will jump offB) None of the riders will jump offC) The rider at E jumps off	f			X				
D) The riders at D and F jump off E) The riders at E and F jump off		A	В	C	D	E	F	G
26) Two different notes are sound display (i). Then a different pair of frequency?								
i		ji ii						
A) display (i) B) Notes show D) display (i) is identical to displa	n in display (i) ar y (ii) E) It is no	e as close in t possible fro	frequency om the disp	as display lays to tell	y (ii) (which p	C) display pair of not		er in frequency
27) Some isotopes are unstable by proton then decays into a neutron electron, except that it carries a purchas an atomic number of 10, the part A) 9, 19 B) 10, 18	, a positron and ositive charge. (a neutrino. ⁻ One element	The positro that decay an atomic n	n is a part s by positr	icle of a	ntimatter sion is ne	that is mu eon-19. G	ich like an Given that neon
28) Carbon dating is useful for estimating the age of fossils of organisms that were once alive. The ratio of radioactive C-14 to ordinary C-12 in living organisms is about 1:10 ¹² . However, once an organism dies, the C-14 decays. By measuring the ratio of C-14 to C-12 in the fossil, and knowing that C-14 has a half-life of 5700 years, an estimate for the age of the fossil may be made. If a fossil is found with a C-14 to C-12 ratio of 1.25:10 ¹³ , approximately how old is the fossil? A) 5700 years B) 11,400 years C) 17,100 years D) 34,200 years E) 45,600 years								
29) Superconductivity has been a hot topic in physics over the last few years. Some conductors seem to lose all of their resistance to a flow of electrons when cooled below a certain temperature, called the superconducting transition temperature. Although most people only heard of it a few years ago, it was actually discovered by Heike Kamerlingh Onnes in A) the 1980's B) the 1950's C) the 1930's D) the 1910's E) the 1800's								
30) Half of the 2000 Nobel Prize in physics was awarded to Jack S. Kilby for his pioneering work in semiconductor technology which led to the development of integrated circuits, making it possible to pack thousands of devices onto a single silicon "chip". Since the first ICs, development seems to have followed Moore's Law, which predicts that the number of components will double every eighteen months. For every component on a chip in 1960, about how many components would we expect to find								
in the year 2000? A) 27 B) 40	C) 10 ⁸ D) 10	0 ²⁷	E) 10 ⁴⁰					