## The Physics of the Nervous System

Dr. Dan Goldreich Dr. Deda Gillespie

### **Today's lecture**

## (Some) Physics of the Nervous System

# Intro

Touch

## Hearing

Vision

## **Overview of the Nervous System**



How many neurons in human brain? 100 billion

What is the size of a typical neuron? 10 µm (cell body diameter)

What % of the brain do we use?

What is brain's power?

20 W (entire body power = 100 W)



### **Today's lecture**

## (Some) Physics of the Nervous System

## Intro



## Hearing

Vision



# **Touch Pathway**



#### **Time from Stimulus to Perception**

## We sense the past!



#### **Time from Stimulus to Perception**

## Let's do it!



**But how??** 

### **Today's lecture**

## (Some) Physics of the Nervous System

Intro

Touch

# Hearing

Vision

#### The human ear



#### Pressure amplification in the middle ear

Malleus Incus Stapes



## **Pressure Amplification: 2 mechanisms**

1) The oval window is much smaller than the tympanic membrane. Thus, force is **funnelled** to a smaller area, increasing pressure!

2) The stapes displaces the oval window with about 1/10 the displacement of the tympanic membrane, but with much greater force! The ossicles are a **lever** (mechanical advantage) **system**!

## Tympanic membrane

Base of stapes in oval window

### The Cochlea Uncoiled



Bear, Connors, & Paradiso. Neuroscience: Exploring the Brain, 3rd Ed. Ch. 11.

### The Basilar Membrane: Resonant Frequency



Bear, Connors, & Paradiso. Neuroscience: Exploring the Brain, 3rd Ed. Ch. 11.

## Instruments - Resonant Frequency



xylophone



harp

## (Some) Physics of the Nervous System

Dr. Dan Goldreich Dr. Deda Gillespie

## **Localizing Sound: Demo!**



## **Localizing Sound: interaural intensity difference**

The nervous system monitors interaural intensity difference





High-frequency sounds are reflected by the head: sound shadow!

adapted from Neuroscience: exploring the brain. Fig. 11.23

Will the head create a sound shadow at all sound frequencies?

What is the lowest sound frequency that is blocked by the head?

The head reflects sound wavelengths of order head size or less

The speed of sound in air is 344 m / s

speed / head size = frequency

 $\frac{(344 \text{ m/s})}{(20 \text{ cm})} = \frac{(344 \text{ m/s})}{(0.2 \text{ m})} = 1720 \text{ Hz} \sim 2 \text{ KHz}$ 

## **Localizing Sound: interaural time difference**

The nervous system monitors interaural time difference



Low frequency sounds diffract around the head: no sound shadow! 20 Hz - 2,000 Hz

adapted from Neuroscience: exploring the brain. Fig. 11.22

# Brain Teaser (10 min)!

Place all notes, books and other items below your desk.

On your desk should be only: a piece of paper a pen/pencil your calculator



#### **Brain Teaser!**



Show your work.

#### **Brain Teaser Solution**



#### **Brain Teaser Solution**



### **Today's lecture**

## (Some) Physics of the Nervous System

Intro

Touch

Hearing

Vision

### Anatomy of the human eye



© 2008 Sinauer Associates, Inc.

Which part of the eye provides the most refractive power?

Snell's Law gives the answer





\_\_\_\_\_

#### **Refractive Errors**

### (A) Emmetropia (normal)



(B) Myopia (nearsighted)



focal plane is in front of the retina, either because the eyeball is too long, or the cornea is too curved.

### (C) Hyperopia (farsighted)



focal plane is behind the retina, either because the eyeball is too short, or the cornea is insufficiently curved.

### Focusing Up Close



**NEUROSCIENCE, Fourth Edition, Figure 11.2** 

© 2008 Sinauer Associates, Inc.

## Stereopsis



\_\_\_\_\_

Depth illusion: the two red objects hit the retina just as a single closer object would



## How to Create a Stereogram!



## Slides and other info

http://psych.mcmaster.ca/neuroclassics/OAPT.html

(Will be posted next Tuesday)



#### Somatosensory Axons

| ABLE 9.1 Somatic Sensory Afferents that Link Receptors to the Central Nervous System |                                        |                                 |                          |                     |
|--------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|--------------------------|---------------------|
| Sensory function                                                                     | Receptor type                          | Afferent axon type <sup>a</sup> | Axon<br>diameter         | Conduction velocity |
| Touch                                                                                | Merkel, Meissner,<br>Pacinian, Ruffini | Αβ                              | <mark>6-12 μ</mark> m    | 35-75 m/s           |
| Pain/Temp                                                                            | Free nerve endings                     | Δδ                              | 1-5 μm                   | 5-30 m/s            |
| Pain/Temp/Itch                                                                       | Free nerve endings                     | C                               | <mark>0.2-1.5 μ</mark> m | 0.5-2 m/s           |

About how long will it take a-beta, a-delta, and c-fiber APs to travel 1m?

**A-beta**: at ~50 m/s, time to travel 1 m = (1/50)s = 20 ms**A-delta**: at ~10 m/s, time to travel 1 m = (1/10)s = 100 ms**C**: at ~1 m/s, time to travel 1 m = **1 s**