The Quantum Dynamics of Shape A New Starting Point for Quantum Gravity

Sean Gryb OAPT Workshop

and

May 1, 2010

What do we really know about reality? How can our physical theories reflect that?

Intro	Backgrounds 00	Gravity 00000	Shape Dynamics 00	∞'s in QG ०००	QSD oo	Conclusions
Outlin	ne					

- Backgrounds
 - Newton's Bucket and Symmetries
- 3 Einstein's Gravity
 - Newton vs Einstein
 - How General Relativity Works
- 4 Shape Dynamics
 - Geometry vs Shape
- $\fbox{5}$ ∞ 's in Quantum Gravity
 - Smoothing out the Micro
- Quantum Shape Dynamics
 Phase Transitions

	Backgrounds ●0	Gravity 00000	Shape Dynamics 00	∞'s in QG ०००	QSD oo	Conclusions
New	ton's Ruck	<u>et</u>				

	Backgrounds ●0	Gravity 00000	Shape Dynamics 00	∞'s in QG ०००	QSD oo	Conclusions
New	ton's Buck	et				

	1	2	3	4
Relative Motion	NO	YES	NO	YES
Absolute Motion of H_2O	NO	NO	YES	YES
Shape of H ₂ O	FLAT	FLAT	CURVED	CURVED

	Backgrounds ●0	Gravity 00000	Shape Dynamics 00	∞'s in QG ०००	QSD oo	Conclusions
New	ton's Buck	et				

	1	2	3	4
Relative Motion	NO	YES	NO	YES
Absolute Motion of H ₂ O	NO	NO	YES	YES
Shape of H ₂ O	FLAT	FLAT	CURVED	CURVED

Proof of Absolute Space!!

Relational/Absolute \Rightarrow Different Predictions

Definitions

- Symmetry \equiv Equations are invariant.
- Relational \equiv Physical Laws are invariant.

Svmm	etries vs l	Backgro	ounds			
Intro	Backgrounds ○●	Gravity 00000	Shape Dynamics 00	∞ 's in QG	QSD oo	Conclusions

Definitions

- Symmetry \equiv Equations are invariant.
- Relational \equiv Physical Laws are invariant.

Mach's Argument

Backgrounds emerge when many heavy objects (eg, galaxies) are present.

 \rightarrow Related to Hilbert spaces of quantum theories!

00	0 000	00	000	00	
00	00000	00	000	00	
Backgrounds	Gravity	Shape Dynamics	∞'s in QG	QSD	Conclusions

Equivalence Principle and Curvature

-						
	Backgrounds	Gravity	Shape Dynamics	∞ 's in QG	QSD	Conclusions

Equivalence Principle and Curvature

 $\therefore \text{ Parallel straight lines converge} \\ \Rightarrow \text{ spactime is curved!}$

	Backgrounds 00	Gravity ○●○○○	Shape Dynamics 00	∞ 's in QG	QSD oo	Conclusions
New	ton vs Eins	stein				

Two key **OBSERVED** differences:

- O Special Relativity
 - No action at a distance.
 - Lorentz transformations

	Backgrounds 00	Gravity ⊙●○○○	Shape Dynamics 00	∞ 's in QG	QSD oo	Conclusions
New	ton vs Eins	stein				

Two key **OBSERVED** differences:

- O Special Relativity
 - No action at a distance.
 - Lorentz transformations
- O Spin 2 particle
 - Mercury's Orbit
 - Gravity wave polarization

Dart	1. The V	vriables ((Kinomatica)			
Intro	Backgrounds 00	Gravity ○○●○○	Shape Dynamics	∞ 's in QG 000	QSD oo	Conclusions

Rules for painting lines:

- Inumber of dim = number of lines
- O No lines of the same color can cross
- O Draw enough for desired resolution

metric vs geometry

Intro	Backgrounds 00	Gravity ○○○●○	Shape Dynamics 00	∞'s in QG ०००	QSD oo	Conclusions
Part	2: Symme	etry				

Variables are painted lines!

Key Idea

- Symmetry: eq'ns → independent of how you paint. (Need differential geometry)
- Relational: physics \rightarrow independent of how you paint. (Need best matching)

True degree of freedom: geometry!

	Backgrounds 00	Gravity ○○○○●	Shape Dynamics 00	∞'s in QG ०००	QSD oo	Conclusions
Dort	2. Dunom	:				

"Conservation of Energy"
$$\Rightarrow K + V = E$$

Intro	Backgrounds 00	Gravity ○○○○●	Shape Dynamics 00	∞'s in QG 000	QSD oo	Conclusions
Dart	2. Dynam	ice				

"Conservation of Energy"
$$\Rightarrow K + V = E$$

•
$$K \equiv$$
 Rate of change of geometry ($K \sim v^2$, where $v = \frac{\Delta g}{\Delta t}$)

Intro	Backgrounds 00	Gravity ○○○○●	Shape Dynamics 00	∞'s in QG 000	QSD oo	Conclusions
Dart	2. Dynam	ice				

"Conservation of Energy"
$$\Rightarrow K + V = E$$

• $K \equiv$ Rate of change of geometry ($K \sim v^2$, where $v = \frac{\Delta g}{\Delta t}$)

•
$$V\equiv \sum$$
 local curvature $(=1/R)$

Intro	Backgrounds 00	Gravity ○○○○●	Shape Dynamics 00	∞'s in QG 000	QSD oo	Conclusions
Dart	2. Dynam	ice				

"Conservation of Energy"
$$\Rightarrow K + V = E$$

• $K \equiv$ Rate of change of geometry ($K \sim v^2$, where $v = \frac{\Delta g}{\Delta t}$)

•
$$V\equiv \sum$$
 local curvature (= $1/R$)

• $E \equiv \text{cosmological constant}$

Intro Backgrounds Gravity Shape Dynamics & & 's in QG QSD Conclusions Geometry vs Shape Part 1: Size

Rescale:

Only angles and ratios of lengths are measurable. Ratios of Lengths:

$$\frac{d_1}{d_2} = \frac{\Omega d_1}{\Omega d_2}, \text{ etc...}$$
(1)

Intro Backgrounds Gravity Shape Dynamics of sin QG QSD Conclusions of Geometry vs Shape Part 1: Size

Rescale:

Only angles and ratios of lengths are measurable. Ratios of Lengths:

$$\frac{d_1}{d_2} = \frac{\Omega d_1}{\Omega d_2}, \text{ etc...}$$
(1)

Angles: $\cos \theta = \frac{1}{2} \frac{d_2^2 + d_3^2 - d_1^2}{d_2 d_3}$ $= \frac{1}{2} \frac{(\Omega d_2)^2 + (\Omega d_3)^2 - (\Omega d_1)^2}{(\Omega d_2)(\Omega d_3)} \quad (2)$

 $\therefore d_1/d_2, \theta$, etc... are unchanged!

Intro	Backgrounds 00	Gravity 00000	Shape Dynamics ○●	∞'s in QG 000	QSD oo	Conclusions
Geor	netrv vs Sł	hape Par	t 2: LOCAL	Size		

Only LOCAL shapes are measured!

Problem

Local size not measurable. GR depends on scale. Why?

Intro	Backgrounds 00	Gravity 00000	Shape Dynamics ⊙●	∞ 's in QG 000	QSD 00	Conclusions
Coor	motivus SI	aana Da		Sizo		

Geometry vs Shape Part 2: LOCAL Size

Only LOCAL shapes are measured!

Problem

Local size not measurable. GR depends on scale. Why?

Solution?

Find a local scale independent theory (using best matching).

 $\Rightarrow Shape \ Dynamics$

titute for hysics

Intro	Backgrounds 00	Gravity 00000	Shape Dynamics 00	∞'s in QG ●00	QSD oo	Conclusions
Stat	istical Smo	othing				

Physics is possible because we can "smooth-out" fine details.

The Good, the Bad, and the Ugly

- Good: micro-physics averages out.
- Bad: micro destroys macro.
- Ugly: averaging doesn't work.

Intro	Backgrounds 00	Gravity 00000	Shape Dynamics 00	∞'s in QG ●00	QSD oo	Conclusions
Stat	istical Smo	othing				

Physics is possible because we can "smooth-out" fine details.

The Good, the Bad, and the Ugly

- Good: micro-physics averages out.
- Bad: micro destroys macro.
- Ugly: averaging doesn't work.

GR is Bad and Ugly!!

$$\lambda = 2\Delta x \quad \Rightarrow \quad f = \frac{c}{2\Delta x}$$
 (3)

$$\lambda = 2\Delta x \quad \Rightarrow \quad f = \frac{c}{2\Delta x}$$
 (3)

Quantum:

$$E = hf \quad \Rightarrow \quad E = \frac{hc}{2\Delta x}$$
 (4)

$$\lambda = 2\Delta x \quad \Rightarrow \quad f = \frac{c}{2\Delta x}$$
 (3)

$$E = hf \quad \Rightarrow \quad E = \frac{hc}{2\Delta x}$$
 (4)

Gravity: (Black hole radius)

$$R_{\rm BH} = \frac{2mG}{c^2} = \frac{2EG}{c^4} \tag{5}$$

$$\lambda = 2\Delta x \quad \Rightarrow \quad f = \frac{c}{2\Delta x}$$
 (3)

Quantum:

$$E = hf \quad \Rightarrow \quad E = \frac{hc}{2\Delta x}$$
 (4)

Perimeter Institute for

Gravity: (Black hole radius)

$$R_{\rm BH} = \frac{2mG}{c^2} = \frac{2EG}{c^4}$$
(5)
If $\Delta x \sim R_{\rm BH}$ then $\Delta x = \sqrt{\frac{\hbar G}{c^3}} \equiv$ Plank length.

Waves with λ < Plank length create black holes! \Rightarrow micro destroys macro!!

Waves with λ < Plank length create black holes! \Rightarrow micro destroys macro!! Local scale invariance:

Plank length is meaningless!

Waves with $\lambda < \text{Plank}$ length create black holes! \Rightarrow micro destroys macro!!

Local scale invariance:

Alternatives: string theory, LQG, etc...

Intro Backgrounds Gravity Shape Dynamics ∞ 's in QG QSD Conclusions oo oo

Symmetries can be "broken" at low energy!

High Energy (Liquid)

Low Energy (Solid)

Latice \rightarrow broken symmetry

Perimeter Institute for Theoretical Physics

 $\begin{array}{l} \text{Uniform Distribution} \rightarrow \\ \text{symmetry} \end{array}$

In Quantum Shape Dynamics, I expect scale symmetry will be broken.

Intro	Backgrounds 00	Gravity 00000	Shape Dynamics 00	∞'s in QG 000	QSD oo	Conclusions
Concl	usions					

Summary:

- Symmetry \neq Relational (Background Independence)
- Equivalence Principle \rightarrow curved spacetime
- Gravity = dynamic geometry (energy balance)
- Coordinate dependence is relational
- Scale dependence is NOT!
- Shape Dynamics might tame ∞ 's?!

Intro	Backgrounds 00	Gravity 00000	Shape Dynamics 00	∞'s in QG 000	QSD oo	Conclusions
Concl	usions					

Summary:

- Symmetry \neq Relational (Background Independence)
- Equivalence Principle \rightarrow curved spacetime
- Gravity = dynamic geometry (energy balance)
- Coordinate dependence is relational
- Scale dependence is NOT!
- Shape Dynamics might tame ∞ 's?!

Disclaimer

Shape dynamics is not yet a complete theory! There are still many unresolved question.

If we knew what we were doing, it wouldn't be called research!

What is the "difference" between 2 shapes?

Ambiguity in coordinates?

Solution: minimize ΔS by shifting coordinates! \Rightarrow Best Matching

Newton's Laws $(F = \nabla V) = ma) \rightarrow \min(V \cdot \Delta S)$ for all t.

