Canada in Space

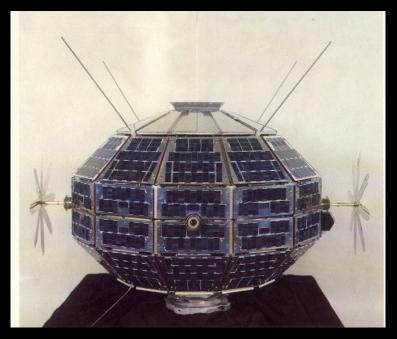
May 29, 2004

Douglas A. Staley Carleton University Mechanical & Aerospace Engineering

Canada in Space

Topics for Discussion

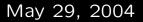
- Historical View
- Telesat and Geosynchronous Satellites
- Space Robotics
- Other Space Technologies
- Space Science
- Space in the Universities
- Whats next



Canada in Space

Canada's First Satellite

(2)


- Allouette Satellites were launched in 1962 and 1965.
- Canada was the Third nation in space.
- Designed to measure Radio Propagation in the upper atmosphere.

Canada in Space

Canada's Second Satellite

- ISIS 1 and 2 included optical payloads as well as radio transmission experiments.
- The Allouette and ISIS spacecraft continued operating for many years beyond their design life.

Canada in Space

Telesat

(4)

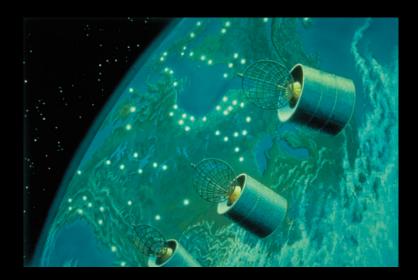
- ANIK (little brother) A1, A2, A3 series.
- Launched in 1972, 1973, 1975.
- First Domestic
 Communications satellites.
- Hughes HS 333 Dual Spinners.

Canada in Space

ANIK Series

(5)

- ANIK A provided communications across the whole country.
- Telesat started as a Government owned company.



Canada in Space

ANIK A Series

(6)

- Three satellites in the ANIK A series.
- Power output about
 5 watts per each of 12
 C-band channels.
- Weight 560 Kg.

Canada in Space

Communications Technology Satellite (CTS)

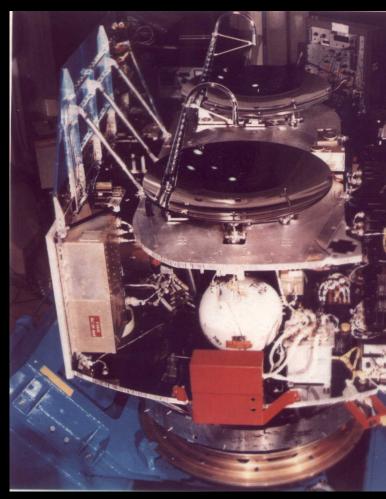
- World's first Direct Broadcast satellite.
- Pioneered the Ku-band.
- The origin of Carleton University's ITV.
- Delta launch in 1976.

Canada in Space

CTS Renamed HERMES

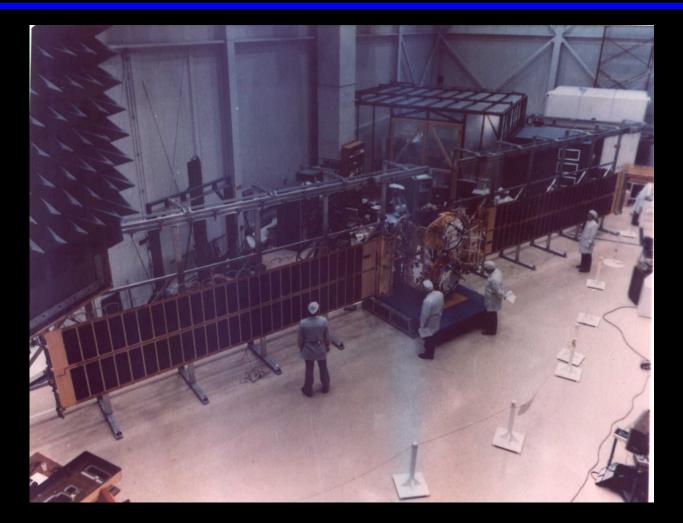
(8)

- CTS was a Small satellite by today's standard.
- Each channel was powered by 400 Watt Travelling Wave Tubes (TWT's).



Canada in Space

(9)


- The Engineering Model is on display at the Science and Technology Museum in Ottawa.
- CTS was a very exciting project at the time.

Canada in Space

CTS Deployment Test

May 29, 2004

(10)

Canada in Space

Some CTS Details

- Fully Canadian designed, Fabricated and Tested.
- Integration and Test was done in Ottawa at the David Florida Labs (DFL).
- CTS proved that video broadcast to small satellite dishes was possible.

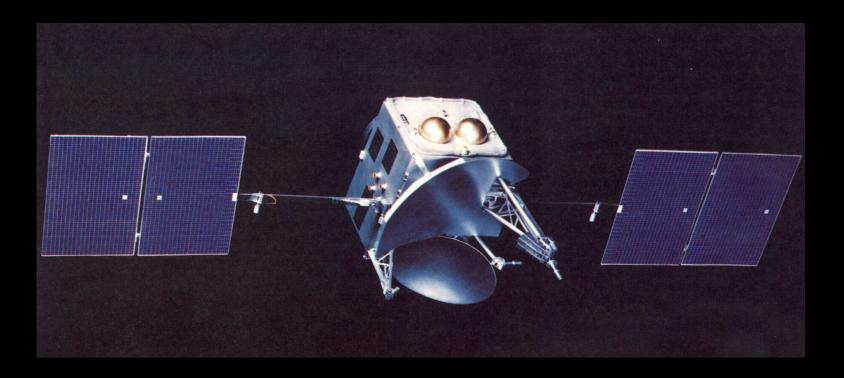
Canada in Space

Innovative Features of CTS

- Flexible Solar Arrays
- High Efficiency TWTs
- WHECON Attitude Control System
- Patch Array Antennas for Telemetry Tracking and Command (TT&C)

Canada in Space

After CTS


- Until 2003, CTS was the last fully Canadian Spacecraft.
- The Government Space Program is now focussed on Space Robotics, Remote Sensing, Space Science and Humans in Space.

May 29, 2004

Canada in Space

Canada in Space

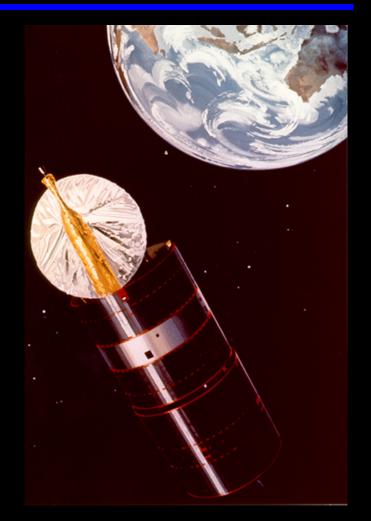
ANIK B

- Launched in 1978.
- Build by RCA.
- The RCA SATCOM was quite popular and has evolved into the Lockheed-Martin large Bus.

Canada in Space

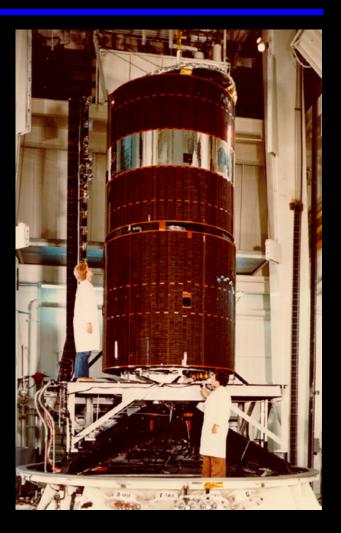
ANIK B Ready for Launch

- ANIK B was the first three-axis satellite Telesat owned.
- Initial work began on ways to control attitude from the ground.
- Weight 920 Kg.



Canada in Space

ANIK C


- One of the first HS 376 spacecraft.
- Second solar array drum doubled the power.
- Simple to operate.
- Launched in 1982, 1983, 1985.

Space Technology Canada in Space ANIK C Ready for Thermal Vacuum test

- Quartz window allows heat to escape but blocks sunlight.
- Dual Spinner the body spins at 55 RPM.
- Antennas and amplifiers are despun.

Canada in Space

ANIK C

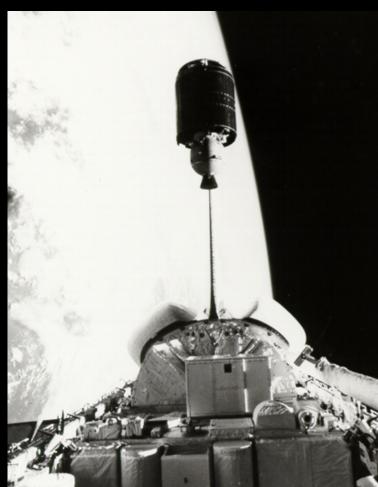
- All three ANIK C spacecraft were shuttle launches.
- Each provided 16 active Ku-band transponders.
- Weight 1160 Kg.

Canada in Space

ANIK C

(20)

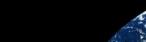
- Spacecraft is loaded into a cradle for insertion into Space Shuttle.
- Spin platform provides initial spin for stability.



Canada in Space

ANIK C

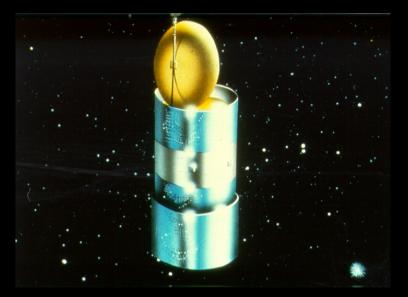
- After deployment from the Shuttle, the perigee kick motor is ignited.
- Inertia ratio is stable during transfer orbit.
- Unstable spinner with solar drum deployed.


Canada in Space

ANIK C

(22)

- Active nutation control provided by product of inertia coupling from deployed antenna.
- ANIK C's lasted 15 years.



Canada in Space

ANIK D

- Two more HS 376 spinners.
- Each with 24 active C-band transponders.
- Weight 1240 Kg.
- Launched 1982, 1984.
- Delta & Shuttle launch.

Canada in Space

ANIK E

(24)

- Two ANIK E satellites.
- GE Astro 5000 bus, an evolved RCA SATCOM.
- Weight 2930 Kg.
- Ariane 4 launches in April and September of 1991.

Canada in Space

ANIK E

- Solar array deployment tests.
- 24 C-band and 16
 Ku-band transponders.

Canada in Space

ANIK E and GLAC

- Solar storm in 1994 nearly finished Telesat.
- Solar particles caused discharges in the momentum wheel electronics.

Canada in Space

ANIK E and GLAC

- Earth sensor roll and pitch data is transmitted to the ground.
- Ground antennas measure yaw from the polarization of the transmitted signal.
- Ground system commands thrusters and torque rods to maintain attitude.

May 29, 2004

Canada in Space

Nimiq

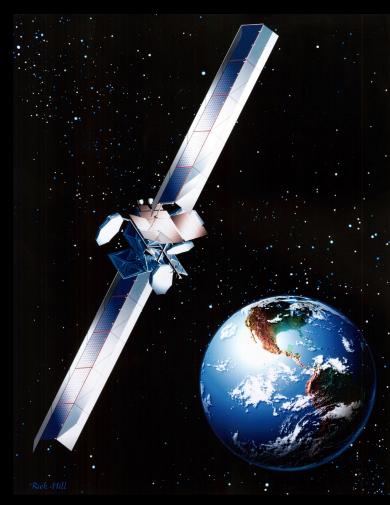
(28)

- Nimiq was launched in 1999 on a Russian Proton rocket.
- Lockheed-Martin A 2100 AX bus, an evolved RCA SATCOM.
- Weight 3600 Kg.
- 32 Ku-band transponders.

Canada in Space

Nimiq

- Nimiq is used for Direct Broadcast.
- 12 year life limited by propellant load.
- Most of the propellant is used for orbit inclination control.



Canada in Space

ANIK F1

- ANIK F1 is a Boeing 702.
- Weight 4700 Kg.
- Ariane launch in November, 2000.
- 36 C-band and 48 Ku-band transponders.
- 15 year life was predicted.

Canada in Space

ANIK F1

- With ANIK F1, Telesat has extended service to North and South America.
- Power nearly 15 Kw.
- Some power is used by XIPS, the XENON Ion propulsion system.

Canada in Space

ANIK F2

(32)

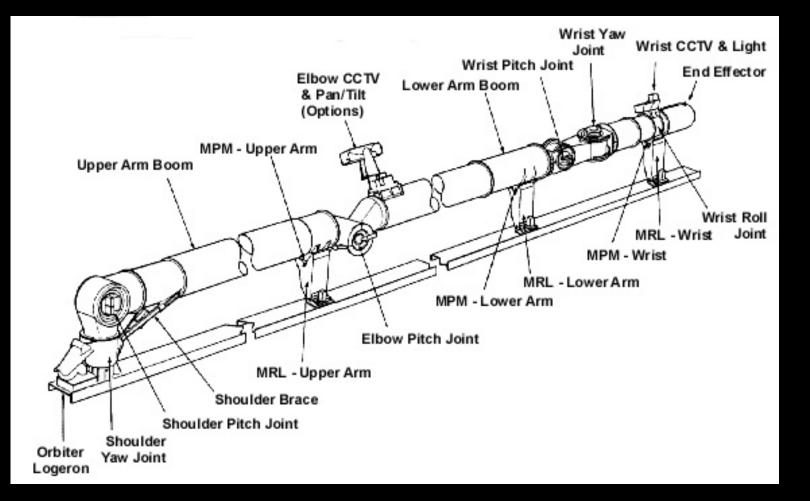
- Boeing 702
- Launch imminent
- Weight 5900 Kg
- Transponders
 - 50 Ka-band
 - 40 Ku-band
 - 24 C-band

Telesat

- Telesat was first and built a world wide ground tracking network to control the Telesat Fleet from launch to final orbit.
- Telesat provides Transfer Orbit control for many satellite companies and provides consulting services around the world.

Canada in Space

SRMS (CANADARM)



Canada in Space

SRMS (CANADARM)

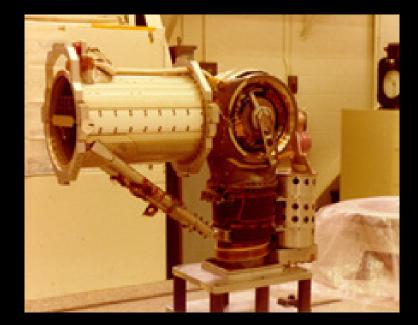
May 29, 2004

(35)

Canada in Space

SRMS (CANADARM)

- The SRMS was first launched in 1981.
- Weight 750 lb.
- Max. load 32,000 lb.
- Five units delivered.
- Three survive.



Canada in Space

SRMS Shoulder Joint

- Shoulder Joint differential planetary gears provide 2000/1 gear ratio.
- Gears are back driveable.

Canada in Space

SRMS Flat Floor Tests

- Air bearings are used to support weight in gravity.
- Maximum tip force of 10 lb.
- End effecter uses wire snares.
- 6 joints 6 degrees of freedom.
- Singularities are managed.

May 29, 2004

Canada in Space

Space Station RMS

- Space station is an international undertaking.
- Russian partnership is considered to be very important.
- Canada is supplying the Mobile Service System (MSS).

Canada in Space

Mobile Service System

- Canadian expertise in the control of large space structures started with CTS (lowest natural frequency 0.025 Hz).
- Shuttle RMS can have
 2.5 cm end point
 deflections.

Canada in Space

Mobile Service System

- MSS includes the SSRMS (CANADARM 2) with 7 degrees of freedom.
- Complete system has four parts, Mobile Base Station (MBS), the arm (SSRMS), Special Purpose Dexterous Manipulator (SPDM), Robotic Work Station (RWS).

Canada in Space

Robotic Workstation

- Two Robotic
 Workstations were
 delivered on March 8,
 2001 STS-102 flight.
- Control Stations for the MSS.

Canada in Space

CANADARM 2

- The arm was installed by Chris Hadfield in April, 2001.
- The 7th degree of freedom removes kinematic singularities.
- Force/Moment Sensor provides improved control.

Canada in Space

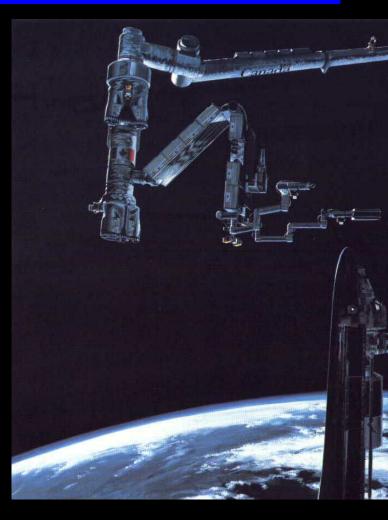
Special Purpose Dexterous Manipulator

- Special Purpose
 Dexterous Manipulator
 (SPDM) attaches to the end of the arm.
- It provides fine motion control.

Canada in Space

Mobile Base System

- The Mobile Base
 System (MBS) is a moving platform for the arm.
- Holds parts, tools and accessories.

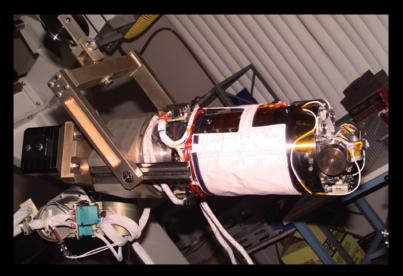


Canada in Space

Space Station Arm

(46)

- SSRMS is being used for Space Station construction.
- Every task is very carefully pre-planned and simulated.



Canada in Space

Mobile Service System

- MSS is essential for full utilization of the space station.
- All components of MSS are serviceable in space with Orbital Replacement Units.

Canada in Space

RADARSAT 1

 The RADARSAT project was started to monitor ice conditions in the Arctic Ocean where oil tankers were probing the Arctic.



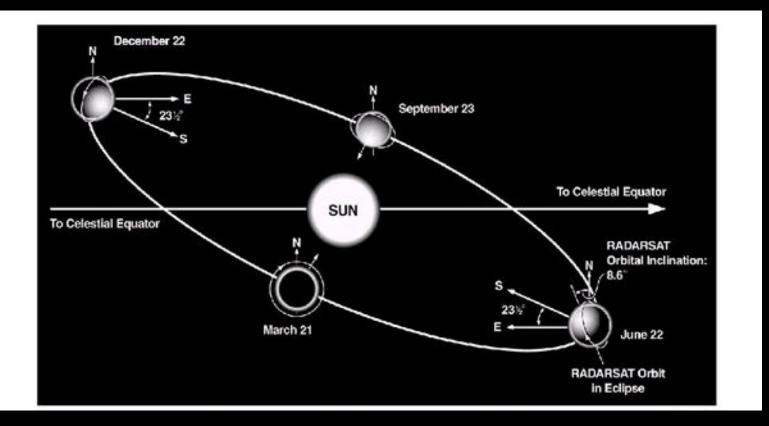
May 29, 2004

Canada in Space

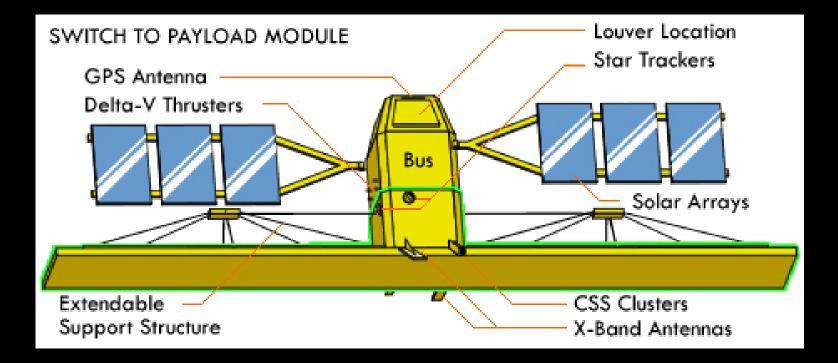
- Slotted Antenna during deployment tests at the DFL
- Bus by Ball
- Radar by Spar
- Antenna by CAL
- Integration by Spar

Canada in Space

- Solar array deployment tests at DFL.
- Project took 15 years from start to launch.


Canada in Space

- Side looking synthetic aperture radar.
- Sun synchronous orbit.
- Delta launch 1995.
- Weight 2700 Kg.

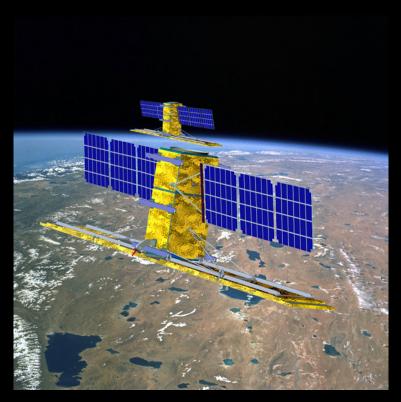


Canada in Space

Canada in Space

Canada in Space

- Three Metre resolution caused difficulty with the United States.
- Originally MDA's former U.S. parent, Orbital Sciences was to supply the Bus.
- The Bus is now supplied by Alenia of Italy.
- Launch sometime soon now.



Canada in Space

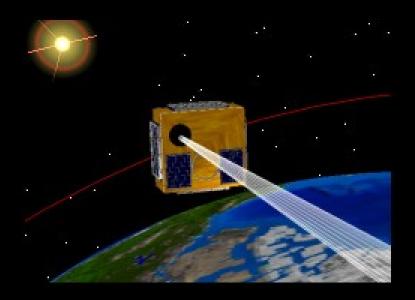
RADARSAT 3

(55)

- Initial concepts include RADARSAT 3 Tandem to RADARSAT 2.
- Effective Aperture increased by separation.
- Very high resolution possible.

Canada in Space

Space Science

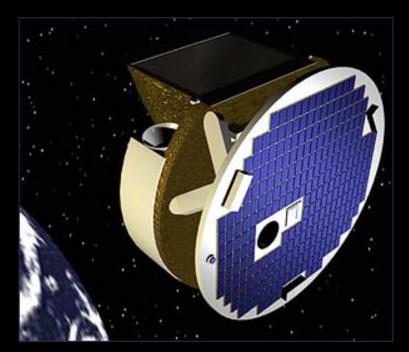

- Space Science is very strong in Canada.
- International collaboration is the norm with countries combining experiments.
- Atmospheric chemistry is very important.

Canada in Space

MOST – The Humble Telescope

(57)

- 50 Kg micro-satellite
- Orbiting telescope
- Designed as a Delta secondary payload but launched on a Russian converted ballistic missile in 2003
- Three axis stabilized
- Dynacon, UTIAS, UBC



Canada in Space

SCISAT 1

(58)

- 150 Kg micro-satellite
- Atmospheric chemistry payload
- Pegasus launch in 2003
- Bristol Aerospace, University of Waterloo, University of Toronto

Canada in Space

SCISAT 1

- Two Unique
 Technologies are flying on SCISAT
- CALTRACTM an EMS Ottawa product
- GyroWheel[™] a Bristol Aerospace product

Canada in Space

CALTRACTM

- CALTRACTM is a Wide Field of View $(36^{\circ} \times 36^{\circ})$ Star Tracker.
- Attitude Determination to 0.005° in all three axes.
- Rapid update rate.

Canada in Space

GYROWHEELTM

- GyroWheelTM is a Three Axis Attitude Control Actuator.
- Internal Rotor is suspended with a flexure based gimbal.
- Also acts as a Gyroscope.

Canada in Space

GYROWHEELTM

- Three PhD's and three Masters students have earned degrees from Carleton, so far.
- Almost every future spacecraft could use GyroWheelTM.

Space in Canada's Universities

- Space Science is well supported by NSERC and the Canadian Space Agency.
- Hundreds of scientists are doing space science across Canada.
- Space Technology is almost invisible in Canada's universities.
- A very small number of Engineers are doing space technology research.

Space Technology Canada in Space

Spacecraft Design at Carleton

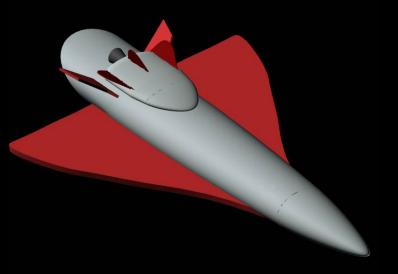
- Carleton is one of the few Canadian universities with a space technology program.
- Space technology is a part of the undergraduate Aerospace program.
- In the fourth year, students can take a spacecraft design course (1 term) and participate in a spacecraft design project.
- The design project usually spans several years.
- Past projects have included a science satellite, a low orbit broadband constellation, a data relay satellite, and most recently, an air launched micro-satellite.

Canada in Space

ATEA Broadband Constellation

- The constellation

 consisted of 248 Low
 Earth Orbit satellites
 with optical
 inter-satellite links and
 Ka band multiple cells.
- Four patents were filed for the methods of maintaining the cells fixed on the ground as the satellites move overhead.



Space TechnologyCanada in Space

ATEA Constellation Launch

- Inserting all spacecraft into orbit would have exhausted the worlds supply of launch vehicles.
- Part of the design team studied a two stage re-usable launch vehicle.

Canada in Space

Design Team After PDR

May 29, 2004

(67)

Canada in Space

Science Data Relay Satellite

- SciSat and other science satellites generate data that can not all be downloaded during a ground station pass.
- SciDR was designed to service up to 20 science satellites simultaneously as a Geosynchronous relay platform.

- The current project addresses a Canadian need for rapid deployment of surveillance satellites.
- The applications include:
 - disaster management,
 - forest fire detection,
 - fisheries surveillance,
 - agriculture optimization,
 - minerals exploration.
- Due to a growing international uncertainty, access to foreign launch vehicles is no longer assured.

Space Technology Cana

- The current project addresses all three aspects:
 - A launch vehicle for micro-satellites,
 - A micro-satellite compatible with the launch vehicle,
 - An infrared optical payload for the micro-satellite.
- Financial support this year has been provided by CRESTech and DND.
- Industrial participants include:
 - Cesaroni Technologies, Gormley, Ontario;
 - MDA, Richmond, B.C.;
 - Routes, Ottawa, Ontario.

Canada in Space

- After studying possible aircraft platforms, the C-130 Hercules was determined to be optimum.
- The launch vehicle is deployed out of the rear cargo doors using parachutes.
- Launch altitude is 10 Km.

Canada in Space

Air Launched Micro-satellite

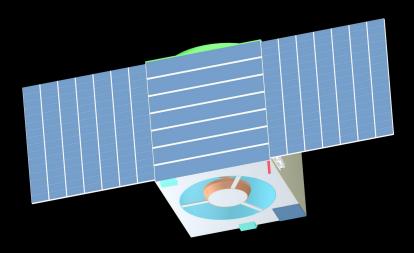
Design Summary

Air-launch from C-130: Deployed by parachutes Drop altitude 10,000 m

Designed for:

55 kg payload

Up to 800 km, sun-synchronous orbit


72

Space Technology Canada in Space

- The launch vehicle has evolved into a three-stage, all solid propellant rocket.
- Total mass is 7,300 Kg, overall length is 9.8 m.
- Contained in a launch frame with a five parachute cluster.
- 56 Kg satellite can be inserted into an 800 Km sun synchronous orbit.
- Trajectory optimization using ASTOS, developed at the University of Stuttgart for ESA/ESTEC.
- Carleton is the only Canadian university using ASTOS.

Canada in Space

- A roll manoeuvre of up to $\pm 30^{\circ}$ is required.
- The optical payload points at targets of interest.
- Two small momentum wheels are V-mounted in the pitch-yaw plane.
- A deadbeat manoeuvre rapidly points the optical axis.

Canada in Space

Air Launched Micro-satellite

75)

- Launch vehicle students on field trip to Trenton air base.
- All students have fond memories of the group project.

What Next

- Commercial Space will need ever larger spacecraft.
- Canadian Space Science instruments will continue to evolve.
- Expect a Canadian military presence in space for Surveillance of space and surveillance from space.
- Increases in Canadian small and micro satellite launches.
- Canadian mission to Mars?

Canada in Space

May 29, 2004

Questions?